ProQuest www.csa.com
 
About CSA Products Support & Training News and Events Contact Us
 
RefWorks
  
Discovery Guides Areas
>
>
>
>
>
 
  
e-Journal

 

Ocean Gardening Using Iron Fertilizer
(Released August 2004)

 
  by Ben Fertig  

Review

Key Citations

Web Sites

Glossary

Conferences

Editor
 
Key Citations Short Format Full Format
  1. The decline and fate of an iron-induced subarctic phytoplankton bloom
    Nature [Nature]. Vol. 428, no. 6982, pp. 549-553. 1 Apr 2004.

  2. Robotic Observations of Enhanced Carbon Biomass and Export at 55 degree S During SOFeX
    Science (Washington) [Science (Wash.)]. Vol. 304, no. 5669, pp. 417-420. 16 Apr 2004.

  3. The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean
    Science (Washington) [Science (Wash.)]. Vol. 304, no. 5669, pp. 414-417. 16 Apr 2004.

  4. Will Ocean Fertilization Work?
    Science (Washington) [Science (Wash.)]. Vol. 300, no. 5616, pp. 67-68. 5 Apr 2003.

  5. The Southern Ocean Iron RElease Experiment (SOIREE) --introduction and summary
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)]. Vol. 48, no. 11-12, pp. 2425-2438. 2001.

  6. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization
    Nature [Nature]. Vol. 407, no. 6805, pp. 695-702. 12 Oct 2000.

  7. Importance of stirring in the development of an iron-fertilized phytoplankton bloom
    Nature [Nature]. Vol. 407, no. 6805, pp. 727-730. 12 Oct 2000.

  8. Differential response of equatorial Pacific phytoplankton to iron fertilization
    Limnology and Oceanography [Limnol. Oceanogr.]. Vol. 44, no. 2, pp. 237-246. Mar 1999.

  9. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the Equatorial Pacific Ocean
    Nature, vol. 383, no. 6600, pp. 495-501, 1996

  10. Large decrease in ocean-surface CO sub(2) fugacity in response to in situ iron fertilization
    Nature, vol. 383, no. 6600, pp. 511-513, 1996

  11. Phytoplankton bloom on iron rations
    Nature, vol. 383, no. 6600, pp. 475-476, 1996

  12. Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean
    Journal of Geophysical Research. D. Atmospheres [J. Geophys. Res. (D Atmos.)]. Vol. 108, no. D7, [np]. Apr 2003.

  13. Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone
    Limnology and Oceanography [Limnol. Oceanogr.]. Vol. 47, no. 5, pp. 1324-1335. Sep 2002.

  14. Modeling the bloom evolution and carbon flows during SOIREE: Implications for future in situ iron-enrichments in the Southern Ocean
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)]. Vol. 48, no. 11-12, pp. 2745-2773. 2001.

  15. Aeolian transport from southern Africa and iron fertilization of marine biota in the south Indian Ocean
    South African Journal of Science [S. Afr. J. Sci.]. Vol. 96, no. 5, p. 244. May 2000.

  16. Physical controls on biogeochemical zonation in the Southern Ocean
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)]. Vol. 49, no. 16, pp. 3289-3305. 2002.

  17. Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)]. Vol. 48, no. 11-12, pp. 2439-2466. 2001.

  18. Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment
    Nature, vol. 383, no. 6600, pp. 513-517, 1996

  19. Effect of iron supply on Southern Ocean CO sub(2) uptake and implications for glacial atmospheric CO sub(2)
    Nature [Nature]. Vol. 407, no. 6805, pp. 730-733. 12 Oct 2000.

  20. Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations
    Nature, vol. 371, no. 6493, pp. 143-145, 1994

  21. Possible biogeochemical consequences of ocean fertilization.
    Limnology and Oceanography [LIMNOL. OCEANOGR.], vol. 36, no. 8, pp. 1951-1959, 1991

  22. Dynamical limitations on the Antarctic iron fertilization strategy.
    Nature, vol. 349, no. 6306, pp. 227-229, 1991

  23. Iron in Antarctic waters.
    Nature, vol. 345, no. 6271, pp. 156-158, 1990

  24. Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters
    Science (Washington) [Science (Wash.)]. Vol. 304, no. 5669, pp. 408-414. 16 Apr 2004.

  25. Progress in the research of iron limitation to marine phytoplankton
    Marine science bulletin/Haiyang Tongbao [Mar. Sci. Bull./Haiyang Tongbao]. Vol. 21, no. 6, pp. 83-90. 2002.

  26. Control of community growth and export production by upwelled iron in the Equatorial Pacific Ocean
    Nature, vol. 379, no. 6566, pp. 621-624, 1996

  27. Iron fertilization
    Encyclopedia of Ocean Sciences - Vol. 3 (I-M). pp. 1385-1397. 2001.

  28. Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)]. Vol. 47, no. 15-16, pp. 3159-3179. 1 Jan 2000.

  29. Iron deficiency and phytoplankton growth in the Equatorial Pacific
    Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res. (II Top. Stud. Oceanogr.)], vol. 43, no. 4-6, pp. 995-1015, 1996

  30. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO sub(2) concentrations.
    Nature, vol. 349, no. 6312, pp. 772-774, 1991

  31. Iron fertilization of the austral ocean: A model assessment
    MPIM-84; ETN-93-93678, , 1992, 20 pp

  32. Differential effects of iron additions on organic and inorganic carbon production by phytoplankton
    Limnology and Oceanography [Limnol. Oceanogr.]. Vol. 46, no. 5, pp. 1199-1202. Jul 2001.

  33. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). 1. Microplankton community abundances and biomass.
    Mar. Ecol. Prog. Ser. Vol. 201, pp. 17-42. 2000.

  34. Testing the iron hypothesis in ecosystems of the Equatorial Pacific Ocean
    Nature, vol. 371, no. 6493, pp. 123-129, 1994

  35. Factors limiting the reduction of atmospheric CO sub(2) by iron fertilization.
    Limnology and Oceanography [LIMNOL. OCEANOGR.], vol. 36, no. 8, pp. 1919-1927, 1991

  36. Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions
    Journal of Plankton Research [J. Plankton Res.]. Vol. 21, no. 3, pp. 525-547. Mar 1999.

  37. Dissolved iron and manganese in surface waters of the Ross Sea during the spring bloom 1994
    Antarctic Journal of the United States [Antarct. J. U.S.]. Vol. 30, no. 5, pp. 199-201. 1995.

  38. Glacial-interglacial CO sub(2) change: The iron hypothesis.
    Paleoceanography, vol. 5, no. 1, pp. 1-13, 1990

  39. Design of a small-scale in situ iron fertilization experiment.
    Limnology and Oceanography [LIMNOL. OCEANOGR.], vol. 36, no. 8, pp. 1960-1965, 1991

  40. Iron limits the cell division rate of Prochlorococcus in the eastern Equatorial Pacific
    Limnology and Oceanography [Limnol. Oceanogr.]. Vol. 45, no. 5, pp. 1067-1076. Jul 2000.

  41. Glacial/interglacial variations in atmospheric carbon dioxide
    Nature, London, England. Vol. 407, no. 6806, pp. 859-869. 2000.